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Abstract: We developed a hyperspectral imaging tool based on surface-enhanced Raman
spectroscopy (SERS) probes to determine the expression level and visualize the distribution of
PD-L1 in individual cells. Electron-microscopic analysis of PD-L1 antibody - gold nanorod
conjugates demonstrated binding the cell surface and internalization into endosomal vesicles.
Stimulation of cells with IFN-γ or metformin was used to confirm the ability of SERS probes to
report treatment-induced changes. The multivariate curve resolution-alternating least squares
(MCR-ALS) analysis of spectra provided a greater signal-noise ratio than single peak mapping.
However, single peak mapping allowed a systematic subtraction of background and the removal
of non-specific binding and endocytic SERS signals. The mean or maximum peak height in the
cell or the mean peak height in the area of specific PD-L1 positive pixels was used to estimate
the PD-L1 expression levels in single cells. The PD-L1 levels were significantly up-regulated
by IFN-γ and inhibited by metformin in human lung cancer cells from the A549 cell line. In
conclusion, the method of analyzing hyperspectral SERS imaging data together with systematic
and comprehensive removal of non-specific signals allows SERS imaging to be a quantitative
tool in the detection of the cancer biomarker, PD-L1.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The Programmed death ligand 1 (PD-L1) / programmed death 1 (PD-1) ligand – receptor system
forms an immune checkpoint between activated immune cells to dampen the immune response,
preventing tissue destruction and autoimmunity [1,2]. PD-L1 is expressed on the surface of
multiple cell types, including cancer cells and macrophages [2], while PD-1 is expressed on
cytotoxic, CD8+ T-cells. Cancer cells hijack PD-L1 over-expression as a mechanism of immune
evasion [2,3]. Recently, immune checkpoint inhibitors (e.g. nivolumab and pembrolizumab, both
approved by the FDA [3]), blocking PD-L1/PD-1 interactions have gained momentum as novel
anticancer therapeutics. These drugs achieve durable cancer control in several malignancies
including metastatic lung cancer and melanoma [4].
The measurement of PD-L1 expression by immunohistochemistry is used as a companion

diagnostic to identify patients who might respond to immune checkpoint inhibition [5]. PD-L1
expression is regulated by multiple cytokines, most notably gamma-interferon (IFN-γ), and
through STAT and NF-κB pathway activation [6] as well as by metformin via glycosylation [7].
PD-L1 expression differs across cancers, despite exposure to the same growth factor milieu of
the fetal calf serum, suggesting cell intrinsic regulation of PD-L1 expression. For example, the
human lung adenocarcinoma cell line, A549, expresses low PD-L1 [8], while the human breast
cancer cell line, MDA-MB-231, expresses high PD-L1 levels [9].
Raman microspectroscopy (RM) is non-destructive and measures vibration and rotational

modes of macromolecules at the single-cell level using inelastic laser light scattering [10]. Surface
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enhanced Raman spectroscopy (SERS) enhances the Raman signals by molecules absorbed on
rough metal surfaces and has rapidly progressed from a bench-scale spectroscopic tool to a
preclinical diagnosis technique [11]. Recently, our lab developed multiplexed SERS probes to
visualize the distribution of G-coupled protein receptor 120 (GPR-120) and the clustering of
differentiation receptor 36 (CD36) on taste bud cells [12]. Compared to other imaging systems,
SERS imaging offers high sensitivity and specificity at a single cell level without the limitations
caused by tissue autofluorescence and photobleaching. On the other hand, the cell-based SERS
experiments generally can be divided into two methodologies: the SERS-reporter (SERS-label)
approach or the reporter-free (label-free) SERS approach [13]. The nanoparticles either labeled
with a Raman reporter molecule [14–16] or label-free [17–19] might be internalized by cells,
which can contribute to the background signals but is often ignored. PD-L1 distribution on
MDA-MB-231 cells has been visualized at an intensity of 1580cm−1 of the Raman reporter
p-mercaptobenzoic acid (p-MBA) after background subtraction [20]. However, this approach
discarded most of the spectral information and only used a single Raman peak. This limitation
can be overcome by multivariate spectral analysis methods, such as the multivariate curve
resolution-alternating least squares (MCR-ALS).

MCR-ALS is a powerful approach that is commonly used to identify complex spectral profiles
and visualize the distribution of major components that are spectrally different in cell or tissue
samples [21–23]. The combination of SERS and MCR-ALS has been successfully applied to
quantifying nitroxoline [24] and adenosine [25] in clinical samples. However, MCR-ALS may not
be the method of choice for Raman spectra that contain a single, dominant peak. When dealing
with antibody – SERS conjugates for detection of proteins in cells, the nonspecific binding of
the SERS particles as well as of the antibody has to be subtracted to arrive at specific binding
intensities. However, specific binding measurements are rarely reported when using antibody –
SERS probes. When the assay’s goal is to guide treatment decision, such as in the case of PD-L1
expression levels, separating specific from non-specific signals is critical.
In this paper, we analyze the PD-L1 signal obtained from SERS by MCR-ALS and single

peak quantification within segmented cell boundaries. This approach generates a high-resolution,
spatial map of PD-L1 expression on the surface of single cancer cells. The SERS probes are
conjugated to PD-L1, allowing specific binding to the target molecule on the cell surface. Even
without antibody, nanoparticles can non-specifically adhere to the cell surface (extracellular) and
can be endocytosed by the cells (intracellular), which can also contribute the background signals
in Raman measurements. These conditions complicate the interpretation of the data and have
been overlooked in most SERS detection applications [26,27]. Included in the workflow are
baseline subtraction and background processes, which remove non-specific binding and endocytic
SERS intensities. Since expression of PD-L1 is known to be regulated by IFN-γ or metformin,
we question whether SERS can detect expression changes in PD-L1 after drug treatment.

2. Materials and methods

2.1. Cell culture

A549 cells and MDA-MB-231 cells were purchased from ATCC (Manassas, VA, USA) and
cultured in F-12 kmedium containing 10% fetal bovine serum (Thermo Fisher Scientific,Waltham,
MA, USA) and a 1:1 mixture of Dulbecco’s-modified eagle’s medium (DMEM) supplemented
with 5% fetal bovine serum, respectively. HEK293 cells were generously donated from Dr.
Timothy Gilbertson in University of Central Florida and cultured in DMEM-GlutaMAX media
(Life Technologies, 10569-010), supplemented with 10% Tet-free fetal bovine serum (Fisher,
NC0290780), Blasticidin S HCl (10 µg/mL) and Hygromycin B (100 µg/mL). All cell lines were
cultivated with 5% at 37 °C CO2 in a humidified atmosphere. Metformin was purchased from
Sigma-Aldrich (D150959, St. Louis, USA).
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2.2. Nanoparticle conjugation and characterization

5, 5-dithiobis(2-nitrobenzoic acid) (DTNB) anti-PD-L1 antibody conjugated nanoprobes were
synthesized for Raman SERS detection (Fig. S1). Briefly, 1ml (39 µg/ml) Au nanorods (A12-10-
780-CTAB, Nanopartz Inc. Loveland CO, USA) with 10 nm in diameter and 40 nm in length
(polydispersity index= 7∼8%) was first sonicated with 10 µL DTNB (1mM, Sigma-Aldrich, St.
Louis, MO) for 30 min. Then 10 µL HOOC- Polyethylene glycol (PEG)-SH (1mg/ml, MW 5000,
Nanocs Inc. USA) was added to conjugate with nanorods for 15 min, followed by 40 µL PEG-SH
(1mg/ml, MW5000, Nanocs Inc. USA) sonication for another 30 min. After centrifuging for
15 min (12000g) to remove excess DTNB and PEG, particles were resuspended in 500 µL DI
water and mixed with freshly prepared ethyl(dimethylaminopropyl) carbodiimide (EDC) (10mM,
10 µL, Sigma-Aldrich, St. Louis, MO) and N-Hydroxysuccinimide (NHS) (25mM, 10 µL,
Sigma-Aldrich, St. Louis, MO) solution. After a 30-minute reaction, the excess supernatant was
removed after centrifugation (12000g, 15 min). The resultant particles were resuspended in 200
µL PBS and conjugated with PD-L1 antibody (0.2mg/mL, 10 µL, Acris, Herford, Germany) for
another 1 h. Finally, particles were resuspended in 100 µL Phosphate-buffered saline (PBS) after
discarding excessive antibody. The functionalized nanoparticles (estimated as 19.5 µg/ml) can
be preserved for several days at 4 °C. The SERS probes incubated with live cells for 24 hours.
Cells were either imaged life using Raman spectroscopy, or fixed and imaged via transmission
electron microscope JEOL-JEM 1400 Plus at 120 kV, at Electron Microscopy Core Laboratory
in University of Utah. Cells were seeded on ACLAR discs and grown as monolayer culture until
reaching the desired confluency and incubated with SERS probes for 24 h. After washing with
PBS for three times, the cells were fixed with 1% paraformaldehyde and 2.5% glutaraldehyde in
0.1M Cacodylate buffer and incubated at 4°C for overnight. Next day, the specimens were rinsed
twice in cacodylate buffer and postfixed in 2% osmium tetroxyde for 1 hr at room temperature,
followed by rinse with the same buffer and dH2O. The specimens were poststained with uranyl
acetate for 1 hr at room temperature followed by dehydration with graded ethanol series (50,
70, 95, 100%) and absolute acetone for 10 min each step. The ACLAR disks with the cells
were infiltrated with epoxy resin EMBED -812, embedded and polymerized at 60°C for 48hrs.
Thin sections (70 nm) were obtained using Leica UC6 Ultratome (Leica Mycrosystems, Vienna,
Austria) poststained with uranyl acetate and lead citrate and imaged with electron transmission
microscope JEOL-JEM 1400 Plus at 120 kV. All reagents used in TEM imaging were from
Electron Microscopy Sciences, PA, USA.

2.3. Raman spectroscopy

The Raman spectra were measured by a Renishaw inVia Raman spectrometer (controlled by
WiRE 3.4 software, Renishaw, UK) connected to a Leica microscope (Leica DMLM, Leica
Microsystems, Buffalo Grove, IL, USA), equipped with a 785 nm near-IR laser that was focused
through a 63 × NA= 0.90 water immersion objective (Leica Microsystems, USA). The laser
intensity before and after travelling through the 63× objective was 110mW and 29.4mW,
respectively (measured with LaserCheck, Coherent Inc., Portland, OR, USA). The standard
calibration peak for the spectrometer with silicon mode at a static spectrum was 520.5± 0.1 cm−1.
Cells were cultured on MgF2 (United Crystals Co., Port Washington, NY, USA) for 24 h and
incubated with either IFN-γ (0, 10 and 100 ng/ml) or metformin (0, 6mM) for 24 h. SERS
probes were added into the cell culture system 24 hours prior to streamline mapping (100%
power, 5s exposure time, 0.8 µm step). Cell were washed three times by PBS before Raman
measurements. A rectangle area covering the whole single cell was selected to collect the
spectra. Image segmentation was used to exclude the spectra collected on the background outside
of the cell area. The remaining spectra in each measurement were baseline corrected using
asymmetric least-squares smoothing in OriginLab 2020 (asymmetric factor: 0.001, threshold:
0.05, smoothing factor: 5, number of iterations: 10). MCR-ALS was used to analyze the
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hyperspectral imaging data. The threshold level in the SERS image was defined based on the
results in the negative control experiment using gold nanorod+DTNB without conjugating
antibody (thus no recognition binding with PD-L1 receptor). The 99th percentile of SERS
intensity counts (peak height) from each cell was used to calculate the average peak height across
all cells in the control group. This average was used as the threshold to separate specific and
non-specific intensity counts in each pixel (Fig. S2). A paired t-test was used to compare the mean
difference between the control and various treatments groups. We also determined the percentage
of PD-L1 positive area over the whole cell area after removing the non-specific binding signals.
Pearson correlation analysis was used to characterize the relationship between the percentage and
mean intensity of PD-L1 positive area in each treatment. P<0.05 was considered significant.
Analysis was performed in OriginLab 2020 (Massachusetts, USA) and in MATLAB 2019b. All
data are represented as mean± sd.

2.4. MCR-ALS

MCR is designed to decompose the spectral profiles and concentration levels of a multi-component
(chemical) compound. MCR-ALS analysis is an iterative approach to MCR based on alternating
least squares matrix factorization. The algorithm factors an n×d matrix, D, (n being the number
of collected samples, and d the number of features, in this case, wavenumbers) into two matrices
C (an n×k matrix of concentrations) and ST (a k×d matrix of spectrum profiles). Here, k is
the number of components of the compound, as determined by either prior knowledge or given
by an estimation, typically done using PCA (principal components analysis), or singular value
decomposition (SVD). The factorization takes the form below, where E is an error term.

D = CST + E

The idea behind the alternating least squares method is to minimize the error of the factorization
problem. The error estimation is calculated between the data matrix and the estimated factors
and the optimization problem (ALS) is solved iteratively. That is, after fixing, C, minimize
‖D̂PCA − ĈŜT

‖2 over ST . Then ST is fixed and ‖D̂PCA − ĈŜT ‖2 is minimized over C. At each
iteration, the lack of fit is calculated using

LoF = 100

√√√∑
ij e2ij∑
ij d2

ij

where dij is an element of either the original data matrix D, or the principal component analysis
(PCA) scores of D (D̂PCA), and eij is the corresponding residual given by the difference of
the matrix D (or D̂PCA), and the MCR-ALS construction [28]. The process is repeated until a
convergence criterion is met [28].
The optimization problem has additional optional constraints, such as non-negativity (of

either the concentration, spectral profile, or both), unimodality, and closure [28,29]. Due to the
nature of the Raman spectra, we activate the non-negativity constraint (to ensure wavenumber
measurements are non-negative). Unimodality of concentration was often exhibited without
enforcing the constraint.

The implementation we used was in MATLAB (2019b). Slight adaptations were made to the
original package to allow for automation over multiple image samples.
The estimation of component i of the original matrix D, denoted Di, may be recovered by

taking the outer product of the ith column of C by the ith row of ST , that is, Di = C.iST
i. The

summation of all of the components (plus the error) reconstructs the original matrix D, that is,
D =

∑
i Di + E.
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2.5. Imaging segmentation detection

Prior to the application of image segmentation, the light cell image was cropped to the exact
dimensions as the spectral image to align the areas where the cell is present to the Raman spectra
captured. Edge detection was performed in MATLB 2019b using the Image Processing Toolbox.
The bitmap light cell image undergoes a series of alterations prior to the final result. Imaging
segmentation makes use of the gradient-magnitude of the colors within the image to identify
boundaries of objects within an image [30]. After this preliminary step, the edges are dilated
(broadened) to fully encapsulate the interior of the cell within the image. Once the edges are
sufficiently dilated to enclose the cell, the cellular image is filled to fully segment the cellular
presence and absence. The cellular edges are then smoothed to improve the image representation.
Once the cell is identified within the image, coordinates where the cell is present are mapped to
the original coordinate system produced during Raman imaging for further spectral analysis.

3. Results

The end-to-end pipeline of the hyperspectral image analysis is shown in Fig. 1. The approach
allows data collection from single cells to determine the distribution of PD-L1 within subdomains
of the cell membrane. First, cells were labeled with anti-PD-L1 antibody conjugated to surface
enhanced Raman scattering (SERS) nanoparticles. Second, the binding of the antibody to PD-L1
on the cell surface was visualized using Raman spectroscopy (single peak mapping or MCR-ALS).
In addition, a brightfield image was used to delineate the boundary of the cell. Raman spectra
inside the segmented cell area were retained. The background was subtracted to reveal the
peak height of Raman signals. The mean and maximum intensities of PD-L1 expression were
determined over the entire cell. Alternatively, a threshold was established based on non-specific
binding, to distinguish PD-L1 positive from PD-L1 negative pixels. Thereafter, the percentage of
PD-L1 positive cell area inside the cell outline and mean intensity within the PD-L1 positive area
were determined.

3.1. Cell labeling with PD-L1-SERS nanoparticles (PD-L1 probe)

To determine the binding characteristics of the functionalized PD-L1 probe, the probe was
incubated with A549 cells for 24 h at 37°C and imaged by TEM (Fig. 2). The size of the
rod-shaped nanoparticle (width 14.172± 0.598 nm and length 45.377± 2.995 nm, Fig. 2(B) inlet)
after multiple conjugation steps, is roughly equal to the original dimension (10 nm diameter
and 40 nm length) provided by the manufacturer. TEM showed many PD-L1 probes on the
cell surface, consistent with the subcellular location of the PD-L1 receptor (Fig. 2(A)-(B)). In
addition, several probes entered the cell and were surrounded by membrane-bound structures,
indicating that PD-L1 probes are internalized by endocytosis (Fig. 2(C)-(D)). Notably, the probe
maintained its structural integrity outside and inside the cell. After endocytosis, nanoparticles
were shown to aggregate within vesicular structures [31,32] from which they can be released into
the cytoplasm [33]. After incubation with cells for 24 h, probes were densely aggregated within
membrane-bound vesicular structures (denoted as “V” in Fig. 2(D)). No PD-L1 probes were
observed inside the nucleus (denoted as “N” in Fig. 2(C)-(D)) or within mitochondria (denoted
as “M” in Fig. 2(D)), which is similar to previously reported findings [31,32]. According to the
recent reports, the SERS signals from endocytic nanoparticles were decreased to comparable
level of the signals from the cellular components [14,15]. In our study, all the cellular intrinsic
peaks (∼1000 counts) were overwhelmed by enhanced Raman signals (∼8000 counts) from cell
surface (Fig S1B). Therefore, the endocytosed nanorods labeled with DTNB may not contribute
in a significant way to the overall specific signal in spectral data. In order to address the issue
raised from non-specific binding (nanorod labeled with or without DTNB) and endocytosed
nanorods, we seek to apply the following methods to remove the potential background signal.
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Fig. 1. Schematic illustration of our data processing approach. Raman spectra are collected
throughout the whole slide and analyzed by MCR-ALS (A). In addition, cells are imaged
using a brightfield microscope and the image is processed for cell segmentation (B). Raman
spectra are extracted from the inside of the segmented region and the maximum peak height
of each spectrum is recorded (C). The background is subtracted from the maximum peak
height to obtain the Raman intensity signal. Intensity measurements are displayed as a
heatmap over the cell and a threshold reflecting the non-specific binding is used to distinguish
positive and negative pixels. The approach enables calculations of average signal intensity
in the whole cell as well as in the area encompassed by positive pixels.

3.2. Visualization of PD-L1 on the surface of single cells

Three cell lines, MDA-MB-231 (breast cancer), A549 (lung cancer), and HEK293 cells (human
embryonic kidney cell) were treated either with control, unconjugated nanorods containing the
Raman reporter, DTNB (no PD-L1 antibody), or with DTNB-nanorods conjugated with the
PD-L1 antibody. The MDA-MB-231 and A549 cells are PD-L1 positive, while HEK293 cells
do not express PD-L1 and were used as a control cell line to evaluate the non-specific binding
of the PD-L1 antibody. A spectrum was collected from every pixel within a rectangular area
covering the entire cell (Fig. 3 upper panel). Because the spectral characteristics of the DTNB
probe revealed a single, dominant peak at 1328cm−1, we compared the intensity maps from
the MCR-ALS multivariate analysis method to the single peak height analysis. To remove the
background signal, we extracted spectra from an area with a low peak height (green circle) and
subtracted the background from all spectra of the cell. The raw and corrected (background
removed) spectra from control group and PD-L1 probe treated group of A549 cell was shown in
Fig S2. The MCR-ALS analysis resulted in a better signal-to-noise ratio and less noise compared
to the single peak height method (Fig. 3, middle and bottom panels) demonstrating the advantage
of multivariate analysis over univariate approaches. Compared to PD-L1 negative HEK293
cells, a strong signal was observed in MDA-MB-231 cells and A549 cells. Results in the control
cells incubated with unconjugated DTNB-nanorods did not demonstrate a difference in signal
intensity across the three cell lines. Together, these findings are consistent with the known
expression of PD-L1 in breast and lung cancer cells but not in HEK293 cells. However, the
results also demonstrate that background and non-specific binding cause significant technical and
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Fig. 2. Transmission Electron micrographs of A549 cells incubated with the PD-L1 probe
for 24 h. The nanoparticles appear as electron dense rod-shaped structures. (A): Surface
binding of the SERS probe, the probe is seen on the cell membrane; (B): Enlarged area
noted by red square in (A) and the size of a representative single nanorod is shown in inlet;
(C-D): Endocytic uptake of SERS probes into cells, formation of SERS aggregates (red
arrow) within endosomal vesicles (V). SERS probes are not observed inside the nucleus (N)
or within mitochondria (M).

biological errors in the quantitative assessment of PD-L1 expression. Therefore, we proceeded to
systematically evaluate these sources of error and to remove them in order to generate specific
binding maps for the PD-L1 antibody in individual cells.
To establish the threshold above which we detect specific binding of the PD-L1 antibody, we

determined the intensity levels in control groups, which are generated by the DTNB nanorod
alone (Fig. 4(A)). The averaged 99th percentile in the distribution of peak heights was used as the
threshold to separate positive from negative PD-L1 pixels. The threshold was applied across all
cells labeled with the PD-L1 antibody in the same experiment. The thresholds are 255.99 Raman
counts for MDA-MB-231 cells, and 318.79 Raman counts for A549 cells (See details in Fig. S3.).
Most individual cells incubated with PD-L1 probes revealed high magnitude signals and the
average signal in A549 lung cancer cells and MDA-MB-231 breast cancer cells was significantly
greater than the antibody-free control signal. In addition, the average signal in MDA-MB-231
cells was greater than the average signal in A549 cells, but the difference did not reach statistical
significance. Interestingly, we observed a biphasic distribution of signals in A549 cells, with a
number of cells expressing low/no PD-L1. No significant difference was seen between negative
control and the PD-L1 probe in HEK293 cell (Fig. 4(A), purple box), indicating that PD-L1
antibody has no contribution in non-specific binding.
In single cell Raman imaging, the Raman scanning area covers all of the cell and additional

extracellular area (Fig. 4(B)). Raman spectra within the cell area were retained and further
background corrected, while Raman spectra outside the cell boundary were dismissed. Figure 4(C)
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Fig. 3. Comparison of single peak mapping and MCR-ALS mapping in three cell lines,
MDA-MB-231, A549, HEK293 after incubation with gold nanorods+DTNB (negative
control) and PD-L1 probes. Light images of single cells are shown in the first row and the
area used to collect Raman spectra is shown by the black rectangle. The results from the
single peak (1328cm−1) mapping are shown in the second row. The third row depicts spectra
recorded from the pixel area designated as X (black line) and O (green line). In the fourth
row, MCR-ALS mapping results are shown, using the same color bar range from 0-1200
counts (fourth row). Scale bar: 10 µm.

illustrates a heatmap of background corrected SERS peaks within the outline of a representative
A549 cell. A cluster of pixels with high intensity signals is surrounded by a large region of pixels
at or below the non-specific binding threshold. After subtracting the threshold of non-specific
signal indicated in Fig. 4(A), the final heatmap is generated in Fig. 4(D), only showing colors for
specific PD-L1 positive pixels within the cell.

3.3. Effect of IFN-γ on PD-L1 expression

Treatment of cells with IFN-γ at a concentration of 0-100 ng/ml was used to induce PD-L1
expression [34]. For quantitative analysis of PD-L1, we analyzed Raman peaks at 1328cm−1

and calculated 1) the mean peak height within the cell outline, 2) the maximum peak height
within the cell, and 3) the mean peak height in the area encompassed positive pixels (illustrated
in Fig. 4(D)). In addition, we determined the percentage of the cell area that contains PD-L1
positive pixels.
First, we used the mean peak height inside cells to represent the average PD-L1 expression

level. This approach did not reveal significant changes in PD-L1 expression levels before and after
treatment with IFN-γ (p>0.05 Fig. 5(A)) for both A549 and MDA-MB-231 cells. Next, we used
the maximum peak height and observed a significant increase in PD-L1 in A549 cells, but not in
MDA-MB-231 cells (Fig. 5(B)). In addition, the maximum peak height increases proportional to
the amount of IFN-γ used for stimulation. Finally, we analyzed the mean peak height within the
area of PD-L1 positive pixels (illustrated in Fig. 4(D)). While we observed a significant increase
after IFN-γ treatment (Fig. 5(C)), the difference before and after treatment was less pronounced
than that in Fig. 5(B). Altogether, the results demonstrate that the stimulation of A549 cells with
IFN-γ causes a significant increase in PD-L1 expression.
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Fig. 4. Workflow to generate a mask of specific maximum peak intensities from SERS
signals. A549 and MDA-MB-231 cells were used as positive controls and HEK293 cells
as a negative control of PD-L1 expression. At least 7 individual cells from each cell line
incubated with DTNB-nanorod or nanorod – PD-L1 antibody conjugates were imaged (A).
99th percentile of SERS intensities in the control group (dashed lines) was used as the
threshold to separate positive from negative pixels and averaged to calculate the noise level
(dash line). The scanning area covering the whole single cell (A549 cell with only PD-L1
probe as an example) is denoted by the black dash rectangle in (B). The image was further
segmented to obtain the outline of the cell. Raman spectra inside the cell were retained as
shown in (C). The heatmap of PD-L1 SERS signals after thresholding to separate specific
(color) and non-specific (white) signals is shown in (D). *p<0.05 from paired t-test. Scale
bar in (B): 10 µm.
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Fig. 5. IFN-γ (0, 10, 100 ng/ml) stimulation of A549 and MDA-MB-231 cells. PD-L1
expression measured by averaged SERS intensity counts (A), maximum SERS intensity
counts (B) or SERS intensity counts averaged within the PD-L1 positive pixel area (C). The
percentage of PD-L1 positive area within the cell outline is shown in (D). Numbers above
each box indicate the number of cells positive for PD-L1 divided by the total cell number
cells analyzed. Cells are divided into two groups, separated by the mean signal intensity
of PD-L1 positive pixels. Black squares mark cells with above the mean intensities and
orange squares cells with below the mean intensities. The mean of the % positive pixel area
is shown by the black line across the box. A paired t-test was performed to determine the
significance of difference between control and treatment groups. * p<0.05; N= 6-12 cells.
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So far, measurements do not take into consideration whether PD-L1 expression is localized
to a specific region or spread throughout the cell. To determine the extent of localized PD-L1
expression, we calculated the percentage of PD-L1 positive pixels (illustrated in Fig. 4(D)), inside
the cell boundary. Representative cells with low, medium and high percentages of PD-L1 positive
areas are shown in Fig. S4-5. The percentage of PD-L1 positive pixels is shown in Fig. 5(D).
To visualize the relationship between PD-L1 positive pixels and PD-L1 expression levels, we
colored cells with high average PD-L1 expression in black and cells with low average PD-L1
expression in yellow. No significant correlation was observed between %PD-L1 positive area
and PD-L1 expression level (Table S1).

3.4. Effect of metformin on PD-L1 expression

Since we observed IFN-γ regulation of PD-L1 only in A549, but not in MDA-MB-231 cells, we
treated only A549 cells with metformin. Measurement of PD-L1 expression using antibody-SERS
conjugates revealed a significant decline of PD-L1 after treatment (Fig. 6(A)-(C)). Furthermore,
the decrease in expression was observed in all image processing methods (cell average, peak
height, positive pixel average). In addition, the percentage of PD-L1 positive pixels was
significantly reduced after metformin treatment (Fig. 6(D)). Together these data confirm that
metformin down-regulates PD-L1 expression.

Fig. 6. Metformin treatment reduces PD-L1 expression. A549 lung cancer cells were
treated with 6mM metformin. Data were collected as described in Fig. 5. The average peak
height measured in counts is shown in (A), maximum peak heights are shown in (B) and
average peak height in the positive pixel area (illustrated in Fig. 4(D)) is shown in (C). The
numbers above each box indicate PD-L1 positive over total cells analyzed. In D, cells are
divided into an above the mean intensity (black squares) and a below the mean intensity
group (orange squares). A paired t-test was performed to determine the significance of
difference between control and treatment groups. * p<0.05; N=15-18 cells.

4. Discussion

Traditionally, expression levels of cell surface receptors are measured by enzyme-linked im-
munosorbent assay (ELISA) or flow cytometry of detached, rounded cells. These methods are
ideally suited to generate data from cell populations but cannot capture the subcellular location
of receptor expression. The spatial resolution needed for subcellular analysis of cell cultures
can be provided by fluorescent probes or by Raman active probes. The probes are conjugated to
antibodies that bind to the target protein of interest. However, antibodies and probes generate
non-specific signals that need to be eliminated to determine true protein expression levels.

In this study, we demonstrate that PD-L1 expression in cancer cells (MDA-MB-231 and A549
cell) can be measured with high spatial resolution using SERS. To obtain highly specific SERS
signals, we subtracted the background, which consists of the baseline of the spectrum next to the
peak at 1328cm−1. In addition, we removed nonspecific binding signals by setting a threshold to
distinguish positive and negative signals. Applying both, background and non-specific binding
corrections, we obtained specific and high-quality data for PD-L1 antibody binding. Furthermore,
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we used three methods to process the hyperspectral imaging data: whole cell peak height average,
peak height maximum and peak height average amongst positive pixels. Obtaining data from the
three methods provides a deeper understanding of the spatial organization of SERS signals and
PD-L1 expression in cancer cells [35].

Our study also shows that PD-L1 expression is stimulated by IFN-γ and inhibited by metformin
in lung cancer cells (Fig. 5–6), which is consistent with recent reports [36–38]. In contrast, the
treatment effect of IFN-γ in breast cancer cells was not significant, perhaps due to the inherently
high expression level of PD-L1 in this cell line [9]. The single cell analysis by SERS mapping
provides more information about the heterogeneity among individual cells in the cell line. Our
results show that not all cells respond to IFN-γ or metformin (Fig. 5–6) and approximately
20% of cells were PD-L1 negative prior to treatment. Single-cell measurements allow us to
recognize cell to cell differences, which cannot easily be noticed using conventional methods.
The unique characteristics of SERS mapping generates data with high sensitivity and resolution.
While this data demonstrates the heterogeneity of cells in the cancer cell lines, it also lets us
appreciate limitations in interpreting single cell data. By comparing cell-to-cell variabilities with
the variability of cell populations before and after treatment, we can gain insights into details of
the treatment effect. Further studies with larger numbers of cell samples will be necessary to
confirm the effects of IFN-γ and metformin on PD-1 expression in cancer cells.
This study demonstrates the successful application of Raman imaging with multivariate

analysis and image processing methods on single cells. We successfully employed a multivariate
method (MCR-ALS) on hyperspectral imaging data to visualize the distribution of PD-L1 in
breast and lung cancer cells. We also used the height of the single, dominant peak in the Raman
spectrum to estimate the expression levels of PD-L1. The latter approach has the advantage of
allowing a systematic subtraction of non-specific binding and endocytic nanoparticles for each
pixel in the cell outline. Whether background signals would be from intracellular or extracellular
nanoparticles needs to be explored in the future. Image segmentation in brightfield images was
performed to extract the spectra solely from within the cell area. Three methods of processing
the data from the single peak heights of Raman spectra were compared. The average peak height
in the PD-L1 positive pixel area appeared to be more reliable for hyperspectral imaging analysis
than the average peak height across the entire cell. The results from this validation study of our
newly fabricated PD-L1 specific SERS probes support further use of the probes for cell-based
assays and as a tool for selection of cancer patients for treatment with PD-1/PD-L1 immune
checkpoint inhibitors.
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